96.7k views
4 votes
Use the convolution theorem to find the inverse Laplace transform of the given function. StartFraction 5 Over s cubed (s squared plus 25 )EndFraction 5 s3s2+25 laplace transform Superscript negative 1 Baseline StartSet StartFraction 5 Over s cubed (s squared plus 25 )EndFraction EndSet (t )ℒ−1 5 s3s2+25(t)

1 Answer

5 votes

Answer:


(1)/(2)
t^(2)Sin5t

Explanation:

using the Convolution theorem to find the inverse of :


(5)/(s^(3)(s^(2)+25 ) )


L^(-1)
(5)/(s^(3)(s^(2)+25 ) ) =
(1)/(s^(3) ) ×
(5)/(s^(2)+25)

we know from derivation that

Sin(at) =
(a)/(s^(2)+a^(2) )

Hence:
(5)/(s^(2)+25) = Sin5t

Also:
L^(-1)
(n!)/(s^(n+1) ) =
t^(n)


L^(-1)
(1)/(s^(3) ) =
(1)/(2)
L^(-1) (
(2!)/(s^(3) ))

=
(1)/(2)
t^(2)

therefore
L^(-1)
(5)/(s^(3)(s^(2)+25 ) ) =
(1)/(2)
t^(2)Sin5t

User MacGyver
by
3.4k points