Answer:
(a) The population after 15 years is 2678.
(b)Therefore the population P(t) at any time t>0 is
![P(t)= 45t+30 {t^(\frac32)}+260](https://img.qammunity.org/2021/formulas/mathematics/high-school/i8kl6s3lef1yold0vzbqrt51g5daf6mup4.png)
Explanation:
Given that,
The population grew at a rate of
![P'(t)=45(1+\sqrt t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qupv9oxcts1q8g7ptp1b2x402g5ld3y8vt.png)
Integrating both sides
![\int P'(t) dt=\int 45(1+\sqrt t)dt](https://img.qammunity.org/2021/formulas/mathematics/high-school/gpisp8b5nefu311lmbf6sbymry8gu6mnru.png)
![\Rightarrow \int P'(t) dt=\int (45+45\sqrt t)dt](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2r9q4tug8yznwq44m9p9372008x0sys8j.png)
![\Rightarrow \int P'(t) dt=\int 45\ dt+\int 45\sqrt t\ dt](https://img.qammunity.org/2021/formulas/mathematics/high-school/xegnbtjtk34ed203uj5rm6g04vsse9ibvj.png)
[ c is integration constant]
![\Rightarrow P(t)= 45t+45\ (t^(\frac32))/(\frac32)+c](https://img.qammunity.org/2021/formulas/mathematics/high-school/1dh44n5wu8q5ee7celqy83ethk5p20sxdf.png)
![\Rightarrow P(t)= 45t+45*\frac 23 * {t^(\frac32)}+c](https://img.qammunity.org/2021/formulas/mathematics/high-school/cjrmnfxje42xiqvg7gxmk3x6o6bnnjbwbu.png)
![\Rightarrow P(t)= 45t+30 {t^(\frac32)}+c](https://img.qammunity.org/2021/formulas/mathematics/high-school/ljv65a7vduqcoemm8usl7milbmzn0i4ioh.png)
When t=0 , P(0)= 260
![\therefore 260= 45*0+30* {0^(\frac32)}+c](https://img.qammunity.org/2021/formulas/mathematics/high-school/etl693piroqmfgfp81pz9th7ze2hbj0rfd.png)
![\Rightarrow c=260](https://img.qammunity.org/2021/formulas/mathematics/high-school/jz5833mwdxyfbil7wesm143j2mhdy5t27p.png)
![\therefore P(t)= 45t+30 {t^(\frac32)}+260](https://img.qammunity.org/2021/formulas/mathematics/high-school/qr0fkzioehsue3a3kpu1qk8d1vkk35pae7.png)
Therefore the population P(t) at any time t>0 is
![P(t)= 45t+30 {t^(\frac32)}+260](https://img.qammunity.org/2021/formulas/mathematics/high-school/i8kl6s3lef1yold0vzbqrt51g5daf6mup4.png)
To find the population after 15 years, we need to plug t=15 in the above expression.
![P(15)=( 45* 15)+30( {15^(\frac32)})+260](https://img.qammunity.org/2021/formulas/mathematics/high-school/7phwcno756ha8czjpy679s8gd6gd47nmzp.png)
≈2678
The population after 15 years is 2678.