Answer:
a)
![Var(X) = ((b-a)^2)/(12) = ((1027 -251)^2)/(12)= 50181.333](https://img.qammunity.org/2021/formulas/mathematics/college/a977cfaulyxlehyzzte6fpitect1q8pu65.png)
And the deviation would be:
![Sd(X) = √(50181.333)= 224.012](https://img.qammunity.org/2021/formulas/mathematics/college/9ndmtlf8o0zhptwxc3im865nmwrvk8kjxi.png)
b)
![h = (1)/(b-a) =(1)/(1027-251)=0.00129](https://img.qammunity.org/2021/formulas/mathematics/college/nhplsf0ecv951rq70c6qunkkqtp2qtjvnp.png)
c)
![P(X>870) = 1-P(X<870) = 1- (870-251)/(1027-251)= 0.2023](https://img.qammunity.org/2021/formulas/mathematics/college/mc1tf3urq9691e86irgucprfj7ry01iks9.png)
d)
![P(X>1290) = 1-P(X<1290) = 1- (1027-251)/(1027-251)= 0](https://img.qammunity.org/2021/formulas/mathematics/college/xu81y8hz93kumt2c75xlb1ovqu4c7uyju6.png)
e)
![P(380<X<490) = P(X<490)-P(X<380) = (490-251)/(1027-251)- (380-251)/(1027-251)= 0.3080-0.1662= 0.1418](https://img.qammunity.org/2021/formulas/mathematics/college/2mhaul2ojpjl3ftim8zxssq2vd7vhefrow.png)
Explanation:
For this case we define the random variable X as "American household spend" and we know that the distribution for X is given by:
![X \sim Unif (a=251, b =1027)](https://img.qammunity.org/2021/formulas/mathematics/college/d60kdbycmbhwje34ijlvqv0stfbxuv5hqx.png)
Part a
We can calculate the variance first with this formula:
![Var(X) = ((b-a)^2)/(12) = ((1027 -251)^2)/(12)= 50181.333](https://img.qammunity.org/2021/formulas/mathematics/college/a977cfaulyxlehyzzte6fpitect1q8pu65.png)
And the deviation would be:
![Sd(X) = √(50181.333)= 224.012](https://img.qammunity.org/2021/formulas/mathematics/college/9ndmtlf8o0zhptwxc3im865nmwrvk8kjxi.png)
Part b
For this case the height represent the individual probability for any value in the interval and is given by:
![h = (1)/(b-a) =(1)/(1027-251)=0.00129](https://img.qammunity.org/2021/formulas/mathematics/college/nhplsf0ecv951rq70c6qunkkqtp2qtjvnp.png)
Part c
For this case we can use the cumulative distribution function given by:
![F(x) = (x-a)/(b-a) , a \leq X \leq b](https://img.qammunity.org/2021/formulas/mathematics/college/qb0cb8p5h23q5wifrxpkfghvbx4fwewu5e.png)
We want this probability:
![P(X>870) = 1-P(X<870) = 1- (870-251)/(1027-251)= 0.2023](https://img.qammunity.org/2021/formulas/mathematics/college/mc1tf3urq9691e86irgucprfj7ry01iks9.png)
Part d
For this case we can use the cumulative distribution function given by:
![F(x) = (x-a)/(b-a) , a \leq X \leq b](https://img.qammunity.org/2021/formulas/mathematics/college/qb0cb8p5h23q5wifrxpkfghvbx4fwewu5e.png)
We want this probability:
![P(X>1290) = 1-P(X<1290) = 1- (1027-251)/(1027-251)= 0](https://img.qammunity.org/2021/formulas/mathematics/college/xu81y8hz93kumt2c75xlb1ovqu4c7uyju6.png)
Part e
We want this probability:
![P(380<X<490) = P(X<490)-P(X<380) = (490-251)/(1027-251)- (380-251)/(1027-251)= 0.3080-0.1662= 0.1418](https://img.qammunity.org/2021/formulas/mathematics/college/2mhaul2ojpjl3ftim8zxssq2vd7vhefrow.png)