Given:
Given that ABC is a right triangle.
The length of AB is 7 units.
The measure of ∠A is 65°
We need to determine the length of AC
Length of AC:
The length of AC can be determined using the trigonometric ratio.
Thus, we have;

Where the value of
is 65° and the side adjacent to the angle is AC and the side hypotenuse to the angle is AB.
Substituting the values, we have;

Substituting AB = 7, we have;

Multiplying both sides by 7, we get;



Rounding off to the nearest hundredth, we get;

Thus, the length of AC is 2.96 units.