87,948 views
10 votes
10 votes
Solve:-


(x + 4)/(x - 4) + (x - 4)/(x + 4) = 3 (1)/(3)


help mmmm


User Harish Gyanani
by
3.2k points

1 Answer

0 votes
0 votes

Answer:


\displaystyle{ (x + 4)/(x - 4) + (x - 4)/(x + 4) = 3 (1)/(3) }


\displaystyle{ \frac{ {(x + 4) }^(2) + {(x - 4)}^(2) }{(x + 4)(x - 4)} = (10)/(3) }


\displaystyle{ \frac{ {x}^(2) + 8x + {4}^(2) + {x}^(2) - 8x + {4}^(2) }{ {x}^(2) - {4}^(2) } = (10)/(3) }


\displaystyle{ \frac{ {2x}^(2) + 16 + 16 }{ {x}^(2) - 16 } = (10)/(3) }


\displaystyle{3( {2x}^(2) + 32) = 10( {x}^(2) - 16) }


\displaystyle{ {6x}^(2) + 96 = {10x}^(2) - 160 }


\displaystyle{ {10x}^(2) - 160 = {6x}^(2) + 96 }


\displaystyle{ {10x}^(2) - {6x}^(2) - 160 - 96 = 0 }


\displaystyle{ {4x}^(2) - 256 = 0}


\displaystyle{4( {x}^(2) - 64) = 0}


{x}^(2) - {8}^(2) = \displaystyle{ (0)/(4) }


\displaystyle{(x + 8)(x - 8) = 0}


\displaystyle{ \rm{either, \: x + 8 = 0............(1) }}


\rm{or ,\: x - 8 = 0...............(2)}

From equation (1)


x + 8 = 0


x = - 8

From equation (2)


x - 8 = 0


\displaystyle{x = 8}


\therefore{x=±8}

User Include
by
3.3k points