157k views
0 votes
Prove it :


(1 + \cos(x) - \sin(x) )/(1 + \cos(x) + \sin(x) ) = \sec(x) - \tan(x)
Please show working using paper...

User RMD
by
8.3k points

1 Answer

6 votes

Heya!


\text{First, manipulate the left side.}\\\text{Use the rule:}~a-b=((a-b)(a-b))/(a+b) = (a^2-b^2)/(a+b) \\\text{Use the identity:}~1-sin^2(x)=cos^2(x)\\(1+cos(x)-sin(x))/(1+cos(x)+sin(x)) = (cos(x)+(cos^2(x))/(1+sin(y)))/(1+cos(x)+sin(x))


\text{Second, simplify the numerator}~cos(x)+(cos^2(x))/(1+sin(x))\\\text{Convert element to a fraction:}~cos(x)=(cos(x)(1+sin(x)))/(1+sin(x))\\\text{Add:}~cos(x)=(cos(x)(1+sin(x)))/(1+sin(x))+(cos^2(x))/(1+sin(x))\\\text{The denominators are equal so combine:}~(cos(x)(1+sin(x))+cos^2(x))/(1+sin(x))\\\text{Simplify:} ((cos(x)(sin(x)+1)+cos^2(x))/(1+sin(x)) )/(1+cos(x)+sin(x))\\ \text{Apply fraction rule:}~(cos(x)(1+sin(x))+cos^2(x))/(1+sin(x))\\\\


\text{Factor:}~(cos(x)(1+sin(x)+cos(x)))/((1+sin(x))(1+cos(x)+sin(x))) \\\text{Simplify:}~(cos(x))/(1+sin(x))


\text{Third, manipulate the right side.}\\\text{Use the basic trigonometric identity:}~sec(x)=(1)/(cos(x)) \\\text{Use the basic trigonometric identity:}~tan(x)=(sin(x))/(cos(x)) \\\text{Put the expression back together:}~(1)/(cos(x))-(sin(x))/(cos(x))\\\text{Simplify:}~((cos^2(x))/(1+sin(x)) )/(cos(x))


\text{Fourth, simplify.}\\\text{Apply the fraction rule:}~(cos^2(x))/((1+sin(x))cos(x)) \\\text{Cancel out the common factor:}~(cos(x))/(1+sin(x))

Therefore, the expression is TRUE.

Best of Luck!

User Ana Betts
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.