1. Assuming
, we have
![D_x(z\cos z)=z_x\cos z-z\sin z\,z_x=z_x(\cos z-z\sin z)](https://img.qammunity.org/2021/formulas/mathematics/college/4kf2s5ppe7vd8f930ll08a7qp43o54zzey.png)
![D_x(x^2y^3+z)=2xy^3+z_x](https://img.qammunity.org/2021/formulas/mathematics/college/nj27nkw0emv5312j04knu7g372amr3ya9m.png)
so that
![z_x(\cos z-z\sin z)=2xy^3+z_x](https://img.qammunity.org/2021/formulas/mathematics/college/nfoz5nza7s551sujloh3os9meqib64e59s.png)
![z_x(\cos z-z\sin z-1)=2xy^3](https://img.qammunity.org/2021/formulas/mathematics/college/nazfh8n2vbcakro2xhuixeikc9j0y4e0vp.png)
![z_x=(2xy^3)/(\cos z-z\sin z-1)](https://img.qammunity.org/2021/formulas/mathematics/college/1itwc2l2jdd85idc70xz8u0n13essv1fnm.png)
2. Let
. The gradient of
is
![\\abla f(x,y,z)=(2xz+y^2,2xy+z^2,2yz+x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/1c93sqyhxs36nj8dyvo7dswcaq9zvuprjg.png)
and the gradient at the desired point is
![\\abla f(-1,1,2)=(-3,2,5)](https://img.qammunity.org/2021/formulas/mathematics/college/33o15mhbsidu9b4hh6wzuohq9885joyz85.png)
The tangent plane then has equation
![\\abla f(-1,1,2)\cdot(x+1,y-1,z-2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/rkuxzgdqbofzpwqqa7gmrd6lx6slv4phuy.png)
![(-3,2,5)\cdot(x+1,y-1,z-2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/jk3ynu3xgm6qv6vwfq5iytxf6swdxq93qw.png)
![-3(x+1)+2(y-1)+5(z-2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/ld8rd7hzm5lwlsikz2eha4s3fvgtzvxb1d.png)
![-3x+2y+5z=15](https://img.qammunity.org/2021/formulas/mathematics/college/f64n8fbixt3qht5tyw71fss371rmn0zifj.png)
3.
has critical points where the derivatives vanish or do not exist. The latter is irrelevant here, since
is a polynomial and is thus continuous everywhere. So just differentiate and set the derivative equal to 0:
![f_x=y^2-2xy^2+4x^3=0](https://img.qammunity.org/2021/formulas/mathematics/college/5xgzlph51yvs8j3dirboovbajcyhqs36or.png)
![f_y=2xy-2x^2y=0\implies 2xy(1-x)=0](https://img.qammunity.org/2021/formulas/mathematics/college/fmvpwh1w9h282fawwe5rlpyhqrp1sgf2zl.png)
The last equation tells us
,
, or
.
If
, then in the first equation we get
.
If
, then
.
If
, then
.
So there are 3 critical points at (0, 0), (1, -2), and (1, 2).
4. Stationary points are critical points where the derivative vanishes. So same process as in (3):
![f(x,y)=xye^(x+y)](https://img.qammunity.org/2021/formulas/mathematics/college/q498g5gcwkq8qgfj33otu6t2348rvsif61.png)
![f_x=ye^(x+y)+xye^(x+y)=0\implies ye^(x+y)(1+x)=0](https://img.qammunity.org/2021/formulas/mathematics/college/oak9606nu5mv0efqizv74ly4x8qiv6hmky.png)
![f_y=xe^(x+y)+xye^(x+y)=0\implies xe^(x+y)(1+y)=0](https://img.qammunity.org/2021/formulas/mathematics/college/ofpit0lan23bzeu8nvsoona8dyotkrbwyc.png)
The first equation tells us
or
.
for all
, so we can ignore this term.
If
, then
.
If
, then
.
The second equation tells us
or
. But this gives the same information as before.
So there are only two stationary points, (0, 0) and (-1, -1).
5. First find the stationary points:
![f_x=2x+y=0](https://img.qammunity.org/2021/formulas/mathematics/college/l7jcjm5x0uy3jyg0gcv8lnu7u6sxxhvm2k.png)
![f_y=x+2y=0](https://img.qammunity.org/2021/formulas/mathematics/college/eztdy8kb56ru1mntxv7nt00f6er7p88ea4.png)
Solve this to find the one point at (0, 0). At this point, we have
.
Now check for extrema along the boundary. The rectangle is bounded by the lines
,
,
, and
.
On
, we have
![f(-2,y)=y^2-2y+4=(y-1)^2+3](https://img.qammunity.org/2021/formulas/mathematics/college/jpbew9y7h5s4o9z0k0p11lxjy3l7ywx6xd.png)
which attains a minimum of 3 when
and a maximum of 7 when
.
On
, we have
![f(2,y)=y^2+2y+4=(y+1)^2+3](https://img.qammunity.org/2021/formulas/mathematics/college/jp3xsr5zcbtvmifo0xcnb7ejwtw1p9wdbh.png)
which has a minimum of 3 at
and a maximum of 7 at
![y=1](https://img.qammunity.org/2021/formulas/mathematics/college/hi20r0dca9v0qurgu6mzk81uh89xt7pohf.png)
We can check on the other 2 lines, but we'd get the same information.
So we've found that
has an absolute minimum of 0 at (0, 0), and an absolute maximum of 7 at both (-2, -1) and (2, 1).