Given:
Given that TUV is a right triangle.
The measure of ∠T is 16°
The length of VT is 4.9 feet.
We need to determine the length of TU.
Length of TU:
The length of TU can be determined using the trigonometric ratio.
Thus, we have;
![cos \ \theta=(adj)/(hyp)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s5yikrx1yo7lydvzay83lpjyhyz81xcsnu.png)
where
, adj = TV and hyp = TU
Thus, we get;
![cos \ 16^(\circ)=(4.9)/(TU)](https://img.qammunity.org/2021/formulas/mathematics/college/rinoolbzg45xyo05odwje5z7d7cerr4cui.png)
Simplifying, we get;
![TU=(4.9)/(cos \ 16^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/college/go8zvuy1azlfbo49c9gaetjs8fbqcjf0v8.png)
![TU=(4.9)/(0.9613)](https://img.qammunity.org/2021/formulas/mathematics/college/tsy60uk60d318yc5qyxsimv1tzt9wi9sua.png)
![TU=5.097](https://img.qammunity.org/2021/formulas/mathematics/college/l4b3pxp9cba4vydi5qumikl3ow23mwnkda.png)
Rounding off to the nearest tenth, we get;
![TU=5.1](https://img.qammunity.org/2021/formulas/mathematics/college/vlo4cv3v35nak42w48fsmp141lxqvdd2ot.png)
Thus, the length of TU is 5.1 feet.