When you have a negative exponent, you move the base with the negative exponent to the other side of the fraction to make the exponent positive.
For example:
("y" is the base with the negative exponent)
or
![(x^(-5))/(1) =(1)/(x^5)](https://img.qammunity.org/2021/formulas/mathematics/college/z95novbgndkts934pp3wck3ygch5n5ujnv.png)
When you multiply an exponent directly to a base with an exponent, you multiply the exponents together.
For example:
![(y^3)^2=y^((3*2))=y^6](https://img.qammunity.org/2021/formulas/mathematics/college/o5gnvjfaj152jzzqhkv9xos7p1whv4gq1l.png)
or
![(2^1n^1)^3=2^((1*3))n^((1*3))=2^3n^3=8n^3](https://img.qammunity.org/2021/formulas/mathematics/college/90ewznna8xuaphobqfn6rz1ewgjhzbg1y5.png)
When you have an exponent of 0, the result will always equal 1
For example:
![x^0=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gbiufcc9r4imm8jk8jrzjxf0820g9vz6ii.png)
![5^0=1](https://img.qammunity.org/2021/formulas/mathematics/college/zenrqzwik1eaecmjdasb3o18psmry6xz4n.png)
![y^0=1](https://img.qammunity.org/2021/formulas/mathematics/college/8yu94l37p0r1vdwdjm0zfcg0uw7tmc1x0w.png)
I think you should first make the exponents positive
Since you know:
m = 3
n = -5 Substitute/plug it into the equation
![(1)/(((6)/((3)^1)*(-5)^0)^3 )](https://img.qammunity.org/2021/formulas/mathematics/college/4wbkgpx0h00dwy4yx9z3fn9ft28n0ep9zd.png)
![(1)/((2*1)^3)](https://img.qammunity.org/2021/formulas/mathematics/college/zrsanog2p9yj9ua4vcxhjoh6d1svtot4mp.png)
![(1)/(2^3)](https://img.qammunity.org/2021/formulas/mathematics/college/3dglz2n8vkfsini501fgzscdlxcn6e6b7z.png)