Answer:
the coordinates of the vertex are: (2.5, -24.5)
Explanation:
Recall that when we have a quadratic in its standard form:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hj2cyo9lipsf2imfe8tb04vftddbodxbcu.png)
the position of the x-coordinate for the vertex can be obtained via:
![x_(vertex)=(-b)/(2a)](https://img.qammunity.org/2021/formulas/mathematics/college/44030t205i8mjrc17lceq7kzja62dvvl5h.png)
Then in order to find the vertex, first we write the expression in standard form:
![f(x)=(x-6)(2x+2)\\f(x)=2x^2+2x-12x-12\\f(x)=2x^2-10x-12](https://img.qammunity.org/2021/formulas/mathematics/college/sngux34l7mtsjwn0j1qhv1ufxyjy8ofluq.png)
Now that we have the values for the parameters "
" and "b" we find the x of the vertex:
![x_(vertex)=(-b)/(2a)=(10)/(2*2)=(5)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/b55y8ta2nvwo0rntrawml4roeaj47n3uwi.png)
Now we use this x-value in the function to find the correspondent y-value of the vertex:
![f(x)=2x^2-10x-12\\f((5)/(2) )=2\,((5)/(2) )^2-10((5)/(2) )-12\\f((5)/(2) )=-24.5](https://img.qammunity.org/2021/formulas/mathematics/college/mf70cjqevgkw4ac5e01rsosbebf6bdsjs1.png)
Then, the coordinates of the vertex are: (2.5, -24.5)