Answer:
a) b = 18.486 miles
b) Rac = S55°58'59.57"E
Explanation:
Given
AB = 24 miles
BC = 13.5 miles
Rbc = S40°W
CA = b = ?
a) If α is the angle between AB and BC:
α = 90° - Rbc = 90° - 40° = 50°
⇒ α = 50°
We use The Law of Cosines as follows
CA² = b² = AB² + BC² - 2*AB*BC*Cos α
⇒ b² = (24 miles)² + (13.5 miles)² - 2*(24 miles)*(13.5 miles)*Cos 50°
⇒ b² = 341.72 miles²
⇒ b = √(341.72 miles²)
⇒ CA = b = 18.486 miles
b) We use The Law of Sines as follows
CA/Sin α = BC/Sin (90°- Rac)
⇒ Sin (90°- Rac) = BC*Sin α/CA
⇒ Sin (90°- Rac) = (13.5 miles)*Sin 50°/(18.486 miles)
⇒ Sin (90°- Rac) = 0.5594
⇒ 90°- Rac = Sin⁻¹(0.5594) = 34.017°
⇒ Rac = 90° - 34.017° = 55.983° = 55°58'59.57"
⇒ Rac = S55°58'59.57"E