Answer:
![z=(ln(26))/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/vaj8aznvmswqph7dd5o78iliedssvrgj6u.png)
Explanation:
The given equation is:
![0.5\,e^(4z)=13](https://img.qammunity.org/2021/formulas/mathematics/college/20y9tu4tzhbqhdb4fwl232kcrvl14swfnm.png)
so, we first isolate the exponential form that contains the unknown "z" in the exponent, by dividing both sides by 0.5:
![0.5\,e^(4z)=13\\e^(4z)=(13)/(0.5)\\e^(4z)=26](https://img.qammunity.org/2021/formulas/mathematics/college/odfuv06eddf6dqtspbcdu0sn3rtz7a35jq.png)
Now we bring the exponent down by applying the natural log function on both sides, and then solve for "z":
![e^(4z)=26\\ln(e^(4z))=ln(26)\\4\,z=ln(26)\\z=(ln(26))/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/csait14jtpzymlvk7xmvxggs3a0flzj1m2.png)