The manager of a vacation resort believes that the ages of adult visitors to the resort can be modeled by a normal distribution. The manager surveyed a random sample of 765 visitors and recorded their age. A summary of the responses is shown in the frequency table, where x represents the age of the visitor.
(a) Construct a histogram of the distribution of ages.
(b) Write a few sentences to describe the distribution of ages of the adult visitors to the resort.
(c) Does the histogram provide convincing evidence that the surveyed ages come from a normal distribution? Explain your answer.
Age (years) Frequency
20≤x<30 160
30≤x<40. 130
40≤x<50 100
50≤x<60. 115
60≤x<70 125
70≤x<80 135
Answer:
Explanation:
a) Histogram is a basically a bar graph of the information. In this case the Histogram will have the ages on the bottom (horizontal x axis) and the heights of each bar equal to the number in that age bracket (frequency)... See attachment for histogram
b) once i have the histogram, I describe the general shape.
is it a bell shape (with the largest bar(s) in the middle and gets lower as you move away)?
Is it rectangular?
Is it like a side or a leaning bell curve?
It's shape gives the nature of the data which can be a good clue as to what the population looks like.
Since it is a inform of a stretched u-shape it is refers to nonlinear relationship between two variables, in particular, a dependent on an independent variable that is age depends on it frequency.
C. No because since the histogram curve is not a bell shape curve, then it cannot be normal distribution.