Answer:
![I=2.6363\ kg.m^2](https://img.qammunity.org/2021/formulas/physics/college/q7l8x5d64q7vem5bxd00wyzppymqulfmx0.png)
Step-by-step explanation:
Given:
dimension of uniform plate,
![(0.673* 0.535)\ m^2](https://img.qammunity.org/2021/formulas/physics/college/gcz5tro67sel2a9prbc6xrwrp9a4a1m2ib.png)
mass of plate,
![m=10.7\ kg](https://img.qammunity.org/2021/formulas/physics/college/z4dh24q4mxvw5yguwcq9g1ode87sy2xvs9.png)
Now we find the moment of inertia about the center of mass of the rectangular plate is given as:
![I_(cm)=(1)/(12) * m(L^2+B^2)](https://img.qammunity.org/2021/formulas/physics/college/j29ri8brp9hjh96vswzhz2u1ox4x0m3n5u.png)
where:
length of the plate
breadth of the plate
![I_(cm)=(1)/(12) * 10.7*(0.673^2+0.535^2)](https://img.qammunity.org/2021/formulas/physics/college/rf0rinjbb8g5uy2bgwr51d2zdiby5hdm95.png)
![I_(cm)=0.6591\ kg.m^2](https://img.qammunity.org/2021/formulas/physics/college/d6zfsmku05dxbjvgsc6oc658bds543dwau.png)
We know that the center of mass of the rectangular plane is at its geometric center which is parallel to the desired axis XX' .
Now we find the distance between the center of mass and the corner:
![s=(√( (0.673^2+0.535^2)))/(2)](https://img.qammunity.org/2021/formulas/physics/college/mfs8g0d4is0cru5q38851wdtl9z14ux6ff.png)
![s=0.4299\ m](https://img.qammunity.org/2021/formulas/physics/college/z06w25xvkad59h23h89n2z95x4heulec9v.png)
Now using parallel axis theorem:
![I=I_(cm)+m.s^2](https://img.qammunity.org/2021/formulas/physics/college/gwnxvzwd7k0zafirtb18wpt9xc7xk6q42b.png)
![I=0.6591+10.7* 0.4299^2](https://img.qammunity.org/2021/formulas/physics/college/pz1ks4yxvs5lx3im5kcfbw4qq3xv6ya1wh.png)
![I=2.6363\ kg.m^2](https://img.qammunity.org/2021/formulas/physics/college/q7l8x5d64q7vem5bxd00wyzppymqulfmx0.png)