Given:
Given that the graph of a triangle BDE.
The coordinates of the triangle are B(-2,3), D(2,6) and E(3,2)
We need to determine the perimeter of the triangle BDE.
Length of BD:
The length of BD can be determined by substituting the coordinates (-2,3) and (2,6) in the formula,
![BD=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2gv5mdga66xm03h2uelefykglwxf6ivmoa.png)
![BD=√((2+2)^2+(6-3)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fl3tsanf28hje1pwi9qhd2erbbi8k26qhn.png)
![BD=√((4)^2+(3)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/733m1jhsfj1rcp31ktmuplhpcy6onrbjev.png)
![BD=√(16+9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5cppva78fsdp6rjyl56ab6owxzopsm3z8f.png)
![BD=√(25)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z1yda0ozn58q0wx53kvv5t5s17hij0vsvc.png)
![BD=5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ldv2mpajdeeupym2fsr3thm5k1al6a5gwb.png)
Length of DE:
Substituting the coordinates of D(2,6) and E(3,2) in the formula, we get;
![DE=√((3-2)^2+(2-6)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hd3qqsdemzcqq40m7jytuvw6o1fs0wyzas.png)
![DE=√((1)^2+(-4)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ocm3nmlmqj2xxnjsh271w58lh2m26sw029.png)
![DE=√(1+16)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wy74242dzl2xgt4thipcahht96xxgglkra.png)
![DE=√(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p5ovx7r1d04cgasn2gfy1sz8u9mjp1o0i7.png)
Length of BE:
Substituting the coordinates of B(-2,3) and E(3,2) in the formula, we get;
![BE=√((3+2)^2+(2-3)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8idwdvu45l54hzc94a1me5n0kalkcdlwfk.png)
![BE=√((5)^2+(-1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rdhpjkqcj87hlrsvtwwl0a23esrhh72qyh.png)
![BE=√(25+1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nuljm228peh92977l6na7s6o9sh4us3y6j.png)
![BE=√(26)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/el1ksz9cc4du8xe61wsyqm9qgymkojyse2.png)
Perimeter of ΔBDE:
The perimeter of triangle BDE can be determined by adding the lengths of BD, DE and BE.
Thus, we have;
![Perimeter=5+√(17)+√(26)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mkyy874zdefoyrmj2ozil8w88zsxwf0sq4.png)
Hence, the perimeter of ΔBDE is √17 + √26 + 5
Thus, Option A is the correct answer.