Answer:
a) 25
b) 67
c) 97
Explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
![\alpha = (1-0.95)/(2) = 0.025](https://img.qammunity.org/2021/formulas/mathematics/college/b2sgcgxued5x1354b5mv9i43o4qgtn8yk6.png)
Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
![z = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/zv05k6fi2atwaveb38qmkwkmh0vcr5vhx2.png)
Now, find the margin of error M as such
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
In which
is the standard deviation of the population and n is the size of the sample. In this problem,
![\sigma = 0.25](https://img.qammunity.org/2021/formulas/mathematics/college/2vsialdz94ryxedspesj22h2l79ljl1mse.png)
(a) The desired margin of error is $0.10.
This is n when M = 0.1. So
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
![0.1 = 1.96*(0.25)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/7yfi7o6fmf9ghvg2pw2tu79ho5qj9djuwv.png)
![0.1√(n) = 1.96*0.25](https://img.qammunity.org/2021/formulas/mathematics/college/fsye70z5vpael9wtjjhepl8l82o2vc7acb.png)
![√(n) = (19.6*0.25)/(0.1)](https://img.qammunity.org/2021/formulas/mathematics/college/ypsdb9psj5mwh9npox1qjt8o7zfgqkbtej.png)
![(√(n))^(2) = ((19.6*0.25)/(0.1))^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/49a4yzv6pn1yogfi042auswy30hf6aiyoa.png)
![n = 24.01](https://img.qammunity.org/2021/formulas/mathematics/college/ur02prpz8v4g1u93t6836j7ldovq21kw2g.png)
Rounding up to the nearest whole number, 25.
(b) The desired margin of error is $0.06.
This is n when M = 0.06. So
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
![0.06 = 1.96*(0.25)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/ph2n6k7dv11nc9kaxf9xr3q89zlvhurh0y.png)
![0.06√(n) = 1.96*0.25](https://img.qammunity.org/2021/formulas/mathematics/college/l9nr3ntodu6ti2kwgtdk4akhxt200ny9bx.png)
![√(n) = (19.6*0.25)/(0.06)](https://img.qammunity.org/2021/formulas/mathematics/college/z2o7e9uiasnmzjct1z29yuwbi4t8hwp3c7.png)
![(√(n))^(2) = ((19.6*0.25)/(0.06))^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/50owsjnpymgg5p9z88okciykoc676g686f.png)
![n = 66.7](https://img.qammunity.org/2021/formulas/mathematics/college/qz3uywharfuuujyn58ii0o9ypuxe6i5fos.png)
Rounding up, 67
(c) The desired margin of error is $0.05.
This is n when M = 0.05. So
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
![0.05 = 1.96*(0.25)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/ykcciew7wxhgk1xyfwtm8c18qbkzoih4xw.png)
![0.05√(n) = 1.96*0.25](https://img.qammunity.org/2021/formulas/mathematics/college/is4sv8bd4mcpmct8cybncv40111kr395n4.png)
![√(n) = (19.6*0.25)/(0.05)](https://img.qammunity.org/2021/formulas/mathematics/college/py274lvtbewfyekam01o3cawsk6verj1sj.png)
![(√(n))^(2) = ((19.6*0.25)/(0.05))^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/xlc0chx4z2jpm3gtr5qo1e6bu6s4426szh.png)
![n = 96.04](https://img.qammunity.org/2021/formulas/mathematics/college/i0m9msg1z2rcpl89dlchbndddaff7ghbaw.png)
Rounding up, 97