Answer:
The angular resolution is 0.0146°
Step-by-step explanation:
Given:
Diameter of pupil eye
m
Diameter of pupil eye
m
Wavelength of light
m
According to rayleigh criterion,
![\sin \theta = 1.22 (\lambda)/(a)](https://img.qammunity.org/2021/formulas/physics/high-school/u2qw6gumeyg475xda1xh1jkem2eumy1rg4.png)
Where
angular resolution,
diameter of aperture,
For larger diameter
,
![\sin \theta _(1) = 1.22 (558 * 10^(-9) )/(8 * 10^(-3) )](https://img.qammunity.org/2021/formulas/physics/high-school/b6a0kp869i1hrfj2qbdoawf0o7156nnd8n.png)
0.0049°
For smaller diameter
,
![\sin \theta _(2) = 1.22 (558 * 10^(-9) )/(2 * 10^(-3) )](https://img.qammunity.org/2021/formulas/physics/high-school/qdisccwbrb2ee7npnjr113e3td6jztqq9l.png)
0.0195°
For finding the angular resolution,
![\theta _(r) = \theta _(2) - \theta _(1)](https://img.qammunity.org/2021/formulas/physics/high-school/rnnlgr6v970yuf12vhe8xbtmku0qq9ube7.png)
![\theta _(r) = 0.0195 - 0.0049](https://img.qammunity.org/2021/formulas/physics/high-school/x58uwyw3n7wgcvohoe8dquykmsca3ab1ly.png)
0.0146°
Therefore, the angular resolution is 0.0146°