Given:
Given that TUV is a right triangle with measure of ∠V=90°
The measure of ∠U = 55°, and the length of VT is 82 feet.
We need to determine the length of TU.
Length of TU:
The length of TU can be determined using the trigonometric ratio.
Thus, we have;
![sin \ \theta=(opp)/(hyp)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nkldre8lgjlz53znju6dbblh6iiu7nhh3e.png)
where
, opp = VT and hyp = TU
Thus, we have;
![sin \ 55^(\circ)=(VT)/(TU)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1i9pg8f9r6kvahfn8ror7egnlrl134mgqs.png)
Substituting the values, we have;
![sin \ 55^(\circ)=(82)/(TU)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hwb780s0nis8mwygb1pr6ggxirxxtvf61q.png)
Simplifying, we have;
![TU=(82)/(sin \ 55^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/5sf5woviifxl564pu9hlxppzwuevmztm7u.png)
![TU=(82)/(0.819)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sa2rnswqaj2145do4s7ma4kohlsqvr7egn.png)
![TU=100.1](https://img.qammunity.org/2021/formulas/mathematics/high-school/753tnflbkb0ewnkgkyiyiv4961un7ig8a7.png)
Thus, the length of TU is 100.1 feet.