Answer:
The expression
represents the number
rewritten in a+bi form.
Explanation:
The value of
is
in term of
![i^(2)[\tex] can be written as, </p><p>[tex]i^(4)=i^(2)* i^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ba7jsbafk1r0460jcjic8dl70mvb5zrtkx.png)
Substituting the value,
![i^(4)=\left(-1\right)* \left(-1\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fva2uhj181a6l2l7xujs4gffzoitmxkg94.png)
Product of two negative numbers is always positive.
![\therefore i^(4)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/821j0so7xsxeptxm8l4df6d2dy1h7oadb1.png)
Now
in term of
![i^(2)[\tex] can be written as, </p><p>[tex]i^(3)=i^(2)* i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c9cmnpfqdqs7wpea1a7qmexhxxw0bxnz9c.png)
Substituting the value,
![i^(3)=\left(-1\right)* i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/evf0tpilhu3db1y05kax67y8frgm3my17i.png)
Product of one negative and one positive numbers is always negative.
![\therefore i^(3)=-i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/33qfnpejt7vuh0hfz40qepb45sab2l5370.png)
Now
can be written as follows,
![√(-81)=√(\left(81\right)*\left(-1\right))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2fbfqq77iksev13dhaxprxbvfx6690b5jt.png)
Applying radical multiplication rule,
![√(ab)={√(a)}√(b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rml15i2kv6y43snsa1lr9bii6up0ulexcu.png)
![√(\left(81\right)*\left(-1\right))={√(81)}√(-1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kd6o3yq7wglt09c6kuc4mm3qk2xzahiwgd.png)
Now,
and
![√(-1)}=i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b3q403oqvhv2pa74le1xzt7rje5a7lea25.png)
![\therefore √(\left(81\right)*\left(-1\right))=9i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fkmuksw8hmnkkm5nx69b5x7enqu61xqfmt.png)
Now substituting the above values in given expression,
![2i^4-5i^3+3i^2+√(-81)=2\left(1\right)-5\left(-i\right)+3\left(-1\right)+9i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b311dt9ntn6p6l8qt6rhfd505lyauqfd4l.png)
Simplifying,
![2+5i-3+9i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ovzo37p8f3jhlmv4crbvz6q93o7cw43nz3.png)
Collecting similar terms,
![2-3+5i+9i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e6g6on75q9v9vav9rm6l58e388vgkqvees.png)
Combining similar terms,
![-1+14i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d5q6rqg82633jqt03vx0x7s7l73yoyqspo.png)
The above expression is in the form of a+bi which is the required expression.
Hence, option number 4 is correct.