Given:
Given that ABCD is a rectangle.
The diagonals of the rectangle are AC and DB.
The length of AE is (6x -55)
The length of EC is (3x - 16)
We need to determine the length of the diagonal DB.
Value of x:
The value of x can be determined by equating AE and EC
Thus, we have;
![AE=EC](https://img.qammunity.org/2021/formulas/mathematics/college/h0bbo0enxprd391jzqg7qbrmyanul7safl.png)
Substituting the values, we get;
![6x-55=3x-16](https://img.qammunity.org/2021/formulas/mathematics/college/gp8okhyggy6ah9kx3x59x53qnt23qy85t7.png)
![3x-55=-16](https://img.qammunity.org/2021/formulas/mathematics/college/kts7lfwp5x1wgxwqt9ra8ore380sucq3f4.png)
![3x=39](https://img.qammunity.org/2021/formulas/mathematics/college/qn5afpi4i5kjpeltmc0tcv8iniksq50kzv.png)
![x=13](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zvtwmwx4shq7mja72ckbvcxnqshnv4u71p.png)
Thus, the value of x is 13.
Length of AC:
Length of AE =
![6(13)-55=78-55=23](https://img.qammunity.org/2021/formulas/mathematics/college/1hxecwul8gki3i23eb3dqe8h7jxnig61py.png)
Length of EC =
![3(13)-16=39-16=23](https://img.qammunity.org/2021/formulas/mathematics/college/9u1vtopc7hhs16ke32j6lvycma2iwsn6nh.png)
Thus, the length of AC can be determined by adding the lengths of AE and EC.
Thus, we have;
![AC=AE+EC](https://img.qammunity.org/2021/formulas/mathematics/high-school/4oizd1rnvj9n7jguifixf1nrwgwx6vejsa.png)
![AC=23+23](https://img.qammunity.org/2021/formulas/mathematics/college/uz4ore7eh5mqqimcpklojuq64fyt7wxxxy.png)
![AC=46](https://img.qammunity.org/2021/formulas/mathematics/college/8zwsaph3nee118549xdd4a8eh5049s10am.png)
Thus, the length of AC is 46.
Length of DB:
Since, the diagonals AC and DB are perpendicular to each other, then their lengths are congruent.
Hence, we have;
![AC=DB](https://img.qammunity.org/2021/formulas/mathematics/college/mo685k48c9akwxffqjm0nfqt0c35mskhco.png)
![46=DB](https://img.qammunity.org/2021/formulas/mathematics/college/r9wgylq6a9xo02ujh9zs01t389hhfwi8z9.png)
Thus, the length of DB is 46.