Answer:
a) 0.9995c
b) 5641MeV
c) 91670 MeV
Step-by-step explanation:
(a) The speed of approach is given by the formula:
![u=(v_1+v_2)/(1+(v_1v_2)/(c))=(2(0.9898c))/(1+((0.9898)^2c^2)/(c^2))=0.99995c](https://img.qammunity.org/2021/formulas/physics/college/qkpr5jzd3txua7xjmgre5h5jzxoia7wtsu.png)
(b) the kinetic energy is given by:
![E_k=m_0c^2[\frac{1}{\sqrt{1-(v^2)/(c^2)}}-1]](https://img.qammunity.org/2021/formulas/physics/college/bcujmdch0sccljjvozz9kklt0bi9w21iwn.png)
by replacing c=3*10^8m/s, m_0=1.67*10^{-27}kg we obtain:
![E_k=5641MeV](https://img.qammunity.org/2021/formulas/physics/college/nt2xgcs571xtx48ra3lgqaty18iop4iujx.png)
(c) in the rest frame of the other proton we have:
![E_k=m_0c^2[\frac{1}{\sqrt{1-(u^2)/(c^2)}}-1]](https://img.qammunity.org/2021/formulas/physics/college/llecsdudjzcws278tceduxpqer00kz7aqk.png)
by replacing we get
![E_k=91670MeV](https://img.qammunity.org/2021/formulas/physics/college/p4hhozkxe8b7hr337ps9uttg1nx3274shp.png)
hope this helps!!