Answer:
a) 98% confidence interval for the true mean checking account balance for local customers.
(453.586 , 874.693)
b) 95% confidence interval for the standard deviation.
(214.91 , 441.53)
Explanation:
Given a size of sample 'n' =14
given mean of the sample x⁻ = $664.14
standard deviation of the sample 'S' = $297.29.
a)
98% of confidence intervals
![(x^(-) - t_(\alpha ) (S)/(√(n) ) , x^(-)+ t_(\alpha )(S)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/t0tcf5pwjqmzziupuoukblcrpfw2vnzddg.png)
The degrees of freedom γ=n-1 =14-1 =13
t₁₃ = 2.650 at 98% of confidence level of signification.
![(664.14- 2.650(297.29)/(√(14) ) , 664.14+ 2.650(297.29)/(√(14) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/sj3veps11jl1oeba7nvib6dz8fkr346ryp.png)
on calculation, we get
(664.14-210.553 , 664.14+210.553)
(453.586 , 874.693)
98% confidence interval for the true mean checking account balance for local customers.
(453.586 , 874.693)
95% of confidence intervals
![({s\sqrt{\frac{n-1}{X^(2) _{((\alpha )/(2) ,n-1) } } } ,s\sqrt{\frac{n-1}{X^2_{(1-\alpha )/(2),n-1 } } } )](https://img.qammunity.org/2021/formulas/mathematics/college/yt2ujlj4o0jmuz31cidyvl5n6gxaudpqua.png)
The degrees of freedom γ=n-1 =14-1 =13
X^2_{0.05,13} =22.36 (check table)
X^2_{0.95,13} = 5.892 (check table)
![(297.29. (\sqrt{(14-1)/(X^2_(0.05,13) ) } ),297.29(\sqrt{(14-1)/(X^2_(0.95,13) ) } )](https://img.qammunity.org/2021/formulas/mathematics/college/hdfrp2frbmycyv4oawjqz89q5ncv3ndmyc.png)
![(297.29. (\sqrt{(14-1)/(22.36 ) } ),297.29(\sqrt{(14-1)/(5.892 ) } )](https://img.qammunity.org/2021/formulas/mathematics/college/wj6dfms3gbzmm89rfj97y83dw2qrba3o8t.png)
(214.91 , 441.53)
95% confidence interval for the standard deviation.
(214.91 , 441.53)