162k views
1 vote
Jenny is arranging 12 cans of food in a row on a shelf. She has 5 cans of beans, 1 can of carrots, and 6 cans of corn. In how many distinct orders can the cans

be arranged if two cans of the same food are considered identical (not distinct)?​

1 Answer

1 vote

Answer:

5544 ways

Explanation:

Given that:

Number of cans = 12 (n)

Number of cans of corns = 6 (
r_(1))

Number of cans of carrot = 1
r_(2)

Number of cans of beans = 5
r_(3)

The number of different arrangements is given as:


(n!)/(r_(1)!* r_(2)!* ...r_(k)!) where
r_(1) objects are of one kind,
r_(2) objects are of another and so on

We have:
(12!)/(6!1!5!) = 5544 ways

Hope it will find you well.

User Pavol Zibrita
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories