151k views
3 votes
Linear functions can be used to find the price of a building based on its floor area below are two of these functions,

A. Find and compare the slopes

B. Find and compare the y-intercept

C. Describe each function as proportional or non proportion

User MeTitus
by
7.9k points

1 Answer

2 votes

Answer:

Part A) see the explanation

Part B) see the explanation

Part C) see the explanation

Explanation:

The complete question in the attached figure

Part A) Find and compare the slopes

we have

Function 1


y=40x+15,000

This is a linear equation in slope intercept form


y=mx+b

where

y is the price of the building in thousands

x is the floor area in square foot

m is the slope

b is the y-intercept

we have


m=\$40\ per\ ft^2

Function 2

we know that

The formula to calculate the slope between two points is equal to


m=(y2-y1)/(x2-x1)

take two points from the data in the table

(400,32,000) and (700,56,000)

Remember that the price in the table is in thousands

substitute


m=(56,000-32,000)/(700-400)


m=\$80\ per\ ft^2

The slope of the Function 2 is greater than the slope of the Function 1

The slope of the Function 2 is two times the slope of the Function 1

Part B) Find and compare the y-intercept

we know that

The y-intercept is the value of y when the value of x is equal to zero

Function 1


y=40x+15,000

For x=0


y=40(0)+15,000=\$15,000

Function 2

Find the equation in point slope form


y-y1=m(x-x1)

we have


m=80\\point\ (400,32,000)

substitute


y-32,000=80(x-400)

Convert to slope intercept form

isolate the variable y


y-32,000=80x-32,000\\y=80x

For x=0


y=80(0)=0

The y-intercept of the function 1 is $15,000 and the y-intercept of the function 2 is zero (the line passes through the origin)

Part C) Describe each function as proportional or non proportion

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
k=(y)/(x) or
y=kx

In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin

so

Function 1


y=40x+15,000 -----> is a non proportional linear function (because the line has a y-intercept)

Function 2


y=80x ----> is a proportional linear equation (the line passes through the origin)

Linear functions can be used to find the price of a building based on its floor area-example-1
User Bryan Goodrich
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories