Answer:
a)
, b)
, c)
, d)
, e)
, f)
![v\approx 3.422\,(m)/(s)](https://img.qammunity.org/2021/formulas/physics/college/z1sgmetys34b6crydi57tmhhwpmit0lse3.png)
Step-by-step explanation:
a) The frequency of oscillation is:
![f = (76)/(127\,hz)](https://img.qammunity.org/2021/formulas/physics/college/zgdirhkkdzbg1tl6vkfuobmbccou01zo0z.png)
![f = 0.598\,hz](https://img.qammunity.org/2021/formulas/physics/college/j88w86l3r1rtzak61q137zja4lj3vm78fi.png)
b) The angular frequency is:
![\omega = 2\pi \cdot f](https://img.qammunity.org/2021/formulas/physics/college/kobltrp678p4eavnwz6f6zs4uwmvjpfn0k.png)
![\omega = 2\pi \cdot (0.598\,hz)](https://img.qammunity.org/2021/formulas/physics/college/lh0gndzu9a5w9yofybtitkhoxf2sf94li2.png)
![\omega = 3.757\,(rad)/(s)](https://img.qammunity.org/2021/formulas/physics/college/z0sc1f8iu8ld0izn6suqidpf3vpl0m7hfg.png)
Lastly, the speed at the equilibrium position is:
![v_(max) = \omega \cdot A](https://img.qammunity.org/2021/formulas/physics/high-school/vhmum97qfkuqrypy1c46oa0gbvt404n1lk.png)
![v_(max) = (3.757\,(rad)/(s) )\cdot (0.985\,m)](https://img.qammunity.org/2021/formulas/physics/college/uycqafy19bc4u7wh7d57irr7mnmle0euoi.png)
![v_(max) = 3.701\,(m)/(s)](https://img.qammunity.org/2021/formulas/physics/college/ybguorrvsia47hts1m0a2wp5k64bz58ukg.png)
c) The spring constant is:
![\omega = \sqrt{(k)/(m)}](https://img.qammunity.org/2021/formulas/physics/college/ncwm6bk2kzq591t3ku2w9molidg6zlpfjf.png)
![k = \omega^(2)\cdot m](https://img.qammunity.org/2021/formulas/physics/high-school/bmdp0au9h0lu5pneaz5ns84ezfzdc3x8ot.png)
![k = (3.757\,(rad)/(s) )^(2)\cdot (1.09\,kg)](https://img.qammunity.org/2021/formulas/physics/college/s6kapqzsuqtsmch9k216ba4n8lmys3vl4z.png)
![k = 15.385\,(N)/(m)](https://img.qammunity.org/2021/formulas/physics/college/lzzbp3hzfl1faktu33kr53z29kzs9sr9er.png)
d) The potential energy when the particle is located 38.1 % of the amplitude away from the equilibrium position is:
![U = (1)/(2)\cdot (15.385\,(N)/(m) )\cdot (0.375\,m)^(2)](https://img.qammunity.org/2021/formulas/physics/college/6el816csw4imp2ys65vboqa90dnnimrhjj.png)
![U = 1.081\,J](https://img.qammunity.org/2021/formulas/physics/college/nzksi8xjym0qhh8j2rifn7awj9cjeppusq.png)
e) The maximum potential energy is:
![U_(max) = (1)/(2)\cdot (15.385\,(N)/(m) )\cdot (0.985\,m)^(2)](https://img.qammunity.org/2021/formulas/physics/college/m7ifulz01pvvn3jlwtzte664hhyiksn7ad.png)
![U_(max) = 7.463\,J](https://img.qammunity.org/2021/formulas/physics/college/67nma09i5j9wen1c3307i2yhnpsprhyx3d.png)
The kinetic energy when the particle is located 38.1 % of the amplitude away from the equilibrium position is:
![K = U_(max) - U](https://img.qammunity.org/2021/formulas/physics/college/u2q8xzdnui9kfj0fw4z3p1ys1xyax1mr6b.png)
![K = 7.463\,J - 1.081\,J](https://img.qammunity.org/2021/formulas/physics/college/m9u0yapczcob67i4frgq32rcdpfu2loutt.png)
![K = 6.382\,J](https://img.qammunity.org/2021/formulas/physics/college/4bbkun9wykbabaahsa2jupeomxougaicz5.png)
f) The speed when the particle is located 38.1 % of the amplitude away from the equilibrium position is:
![K = (1)/(2)\cdot m \cdot v^(2)](https://img.qammunity.org/2021/formulas/physics/college/fie8kvt9pe4jqn4ojj536askm96njo0d1b.png)
![v = \sqrt{(2\cdot K)/(m) }](https://img.qammunity.org/2021/formulas/physics/college/111bvx4ybsjbyeah52jf6no6f6z63jb2ij.png)
![v = \sqrt{(2\cdot (6.382\,J))/(1.09\,kg) }](https://img.qammunity.org/2021/formulas/physics/college/hy3fh4wt6iodn4ei821ybridhkqkovg7qj.png)
![v\approx 3.422\,(m)/(s)](https://img.qammunity.org/2021/formulas/physics/college/z1sgmetys34b6crydi57tmhhwpmit0lse3.png)