Answer:
26.466cm³/min
Step-by-step explanation:
Given:
Volume 'V'= 320cm³
P= 95kPa
dP/dt = -11 kPa/minute
pressure P and volume V are related by the equation
P
=C
we need to find dV/dt, so we will differentiate the above equation
![V^(1.4) (dP)/(dt) + P(d[V^(1.4) ])/(dt) = (d[C])/(dt)](https://img.qammunity.org/2021/formulas/physics/high-school/nb34r5nn7qvkcisbqatyjedcqz9zrus04h.png)
![(dP)/(dt) V^(1.4) + P(1.4)V^(0.4) (dV)/(dt) =0](https://img.qammunity.org/2021/formulas/physics/high-school/2rgcrsz6dn5frazoos2z3gomlmfgceypex.png)
lets solve for dV/dt, we will have
![(dV)/(dt) =(-(dP)/(dt) V^(1.4) )/(P(1.4)V^(0.4) ) \\(dV)/(dt) =- (-(dP)/(dt) V)/(P(1.4))](https://img.qammunity.org/2021/formulas/physics/high-school/erlyvxny666h3iw8wpjomqj7iwq2kfjncn.png)
(plugged in all the values at the instant)
= 26.466
Therefore, the volume increasing at the rate of 26.466cm³/min at this instant