Answer:
![\approx 31.42 \text{ Square feet per minute}](https://img.qammunity.org/2021/formulas/mathematics/college/w95ucciyicsd14dhsiqvz8r5k4xhcn0dn9.png)
Explanation:
Area of the Pond A=
![\pi r^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/dlcbuo3stzuipxv6p7f7yl1stpzfah0aij.png)
The increase in the area of the pond as it moves outward is:
![(dA)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/nxkh9j92jtcxypwwd6eky922sjviia5q5j.png)
![(dA)/(dt)=(d)/(dt)\pi r^2\\(dA)/(dt)= 2\pi r (dr)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/s1ba271yvf6e3ruh8ylfwoe9sjn6v03h7k.png)
Since the area of the circle formed increases at the rate of 100 square feet per minute.
= 100 Square feet per minute
When the radius, r = 5 feet, we want to determine the rate at which the radius is changing,
.
![(dA)/(dt)= 2\pi r (dr)/(dt)\\100=2*5*\pi (dr)/(dt)\\(dr)/(dt) =(100)/(10 \pi) =10 \pi \approx 31.42 \text{ Square feet per minute}](https://img.qammunity.org/2021/formulas/mathematics/college/uo5nhd3phwbk3bqgzjmj42pr41wg8ci0ja.png)