191,055 views
8 votes
8 votes
If log_b x = 2, log_b y = 5, log_b z = 4
What's log_b (x · y)
What's log_b ( xy^2/z^2)

User Lucas Trzesniewski
by
3.2k points

1 Answer

17 votes
17 votes


\text{Given that,}\\\\\log_b x =2,~~ \log_b y=5,~~ \log_b z = 4\\\\\\\log_b(x\cdot y)\\\\=\log_b x + \log_b y~~~~~~~~~~~~~~~;[\log_b(MN) = \log_b M+ \log_b N ] \\\\=2+5\\\\=7\\\\\\\log_b\left( (xy^2)/(z^2)\right)\\\\=\log_b (xy^2) - \log_b z^2~~~~~~~~~~;\left[\log_b\left(\frac MN \right) = \log_b M - \log_b N \right] \\\\=\log_b x +\log_b y^2 - 2\log_b z\\\\=\log_b x + 2 \log_b y - 2 \log_b z\\\\=2+2 \cdot5 - 2 \cdot 4\\\\=2+10-8\\\\=10-6\\\\=4

User Gabac
by
3.3k points