Answer:
a. 2581.807 K
b. 2.783
c. 5.32 kJ
d. 37.41 %
e. 839.8 kPa
f. 240.59 g/kWh
g. 44.34 kW
Step-by-step explanation:
Here, we have
Properties of air at 900 K are as follows
= 1.1209 kJ/kgK)
= 0.8338 kJ/kgK) k = 1.344
T₂ = T₁×17^(1.344-1)= 927.56 K
P₂ = P₁×(v₁/v₂)^k = 150 kPa × 17^1.344 = 6757.944 KPa
r = (vc - vd)/vc = 17
v_d = 6.5 liters = 0.0065 m³
∴ v_c = 0.00040625 m³
v₁ = v_c +v_d = 0.00040625 + 0.0065 = 0.00691 m³
The mass of gas in the cylinder = P₁V₁/(RT₁)
= 150·0.00691 /(0.287·350) = 0.010313 kg
The fueled burnt in cycle →
A F = mₐ/m f = (m - m f)/m f = (0.010313 - m f)/m f = 28
m f = 3.556×10⁻⁴ kg
Q_(in) = m f· q H V·ηc = 3.556×10⁻⁴ × 40000 = 14.2 kJ
Q_(in) = m c_v(T₃-T₂) = 14.2 kJ = 0.010313×0.8338 (T₃-927.56 )
T₃ = 2581.807 K (Maximum temperature)
b. The cut-off ratio is T₃/T₂ = 2581.807/927.56 = 2.783
V₂ = V₁/r = 0.0065/17 = 3.824 ×10⁻⁴ m³
V₃ = 2.783( 3.824 ×10⁻⁴ ) = 1.06 ×10⁻³ m³
v₄ = v₁
P₃ = P₂
T₄ = T₃×(V₃/V₄)^(k-1) = 2581.807 (1.06 ×10⁻⁴/0.0065)^0.344 = 1385.43 k
P₄ = P₃(V₃/V₄)^(k) = 6757.944 (1.06 ×10⁻⁴/0.0065)^1.344 = 593.756 kPa
Process 4 - 1
Constant volume heat rejection
Q(out) = m·c_v(T₄ - T₁) = 0.010313 × 0.8338 × (1385.43 - 350) = 8.9 kJ
Giving the net out put as
c. The net work per kg of air per cylinder is
W(net) = Q(in) - Q(out) = 14.2 - 8.9 = 5.32 kJ
d. The thermal efficiency is given by
η(th) = W(net)/Q(in) = 5.32/14.2 = 0.3741 =37.41 %
e. The Mean Effective Pressure (MEP)
MEP = W(net)/(V₁-V₂) = 5.32 /(0.0065-3.824 ×10⁻⁴) = 839.8 kPa
f. The specific fuel consumption
s f c = m f/W(net) = 3.556×10⁻⁴/5.32 = 6.683×10⁻⁵ kg/kJ = 240.59 g/kWh
g. The power for the engine speed of 1000 rpm is given by
W'(net) = W(net) ×n'/2 = (5.32 kJ/cycle)(1000(rev/min)/(2 rev/cycle)(1 min/60 s) = 44.34 kW