88.5k views
4 votes
Prove


\small ( \sin(A) - \cos(A) + 1)/(\sin(A) + \cos(A) - 1) = (\cos(A))/(1 - \sin(A) )




Help!!!!!!!!!​

1 Answer

8 votes


( \sin(a) - \cos(a) + 1 )/( \sin(a) + \cos(a) - 1 ) = \\

____________________________________________


( \sin(a) - \cos(a) + 1 )/( \sin(a) + \cos(a) - 1 ) * ( \sin(a) + \cos(a) + 1)/( \sin(a) + \cos(a) + 1 ) =


\frac{ {sin}^(2)(a) + 2 \sin(a) - {cos}^(2) (a) + 1 }{ {sin}^(2)(a) + 2 \sin(a) \cos(a) + {cos}^(2)(a) - 1 } =

_____________________________________________

As you know :


{sin}^(2) (a) + {cos}^(2) (a) = 1

_____________________________________________


\frac{ {sin}^(2) (a) - {cos}^(2)(a) + 2 \sin(a) + 1}{ {sin}^(2) (a) + {cos}^(2)(a) - 1 + 2 \sin(a) \cos(a) } =


\frac{ {sin}^(2)(a) - (1 - {sin}^(2)(a)) + 2 \sin(a) + 1 }{1 - 1 + 2 \sin(a) \cos(a) } =


\frac{ {sin}^(2) (a) + {sin}^(2) (a) - 1 + 1 + 2 \sin(a) }{2 \sin(a) \cos(a) } =


\frac{2 {sin}^(2)(a) + 2 \sin(a) }{2 \sin(a) \cos(a) } =


(2 \sin(a)( \sin(a) + 1) )/(2 \sin(a)( \cos(a) \: ) ) = \\


( \sin(a) + 1)/( \cos(a) ) \\

And we're done...

Take care ♡♡♡♡♡

User AppleLover
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories