Answer:
![4158\text{cm}^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/km2kypuq69n8axmalctj8ma30ltjelnu8y.png)
Explanation:
GIVEN: A cone has a circular base, a perpendicular height of
and a semi vertical angle of
.
TO FIND: Calculate the slant height of the cone. Find the area of its base.
SOLUTION:
Consider the figure attached.
Let the radius of cone be
![\text{r}](https://img.qammunity.org/2021/formulas/mathematics/high-school/7ffbn3ecengdpvv6p1aoe97b99eu0ynmac.png)
![tan(\theta)=\frac{\text{perpendicular}}{\text{height}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/a8mtly5x3vztamfbm9meoycnbmx5l93l7j.png)
![tan(60)=\frac{\text{radius}}{\text{height}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/5nlvtyvtzya2p8zkay8dtlxxvfda8dlmd5.png)
![√(3)=\frac{\text{r}}{\text{21}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ac2dcd4en6t2n42za9knast76s5q7jy0f3.png)
![\text{r}=21√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m6k1t0jpv34zz3frsm4igvlp2ko21ro7ni.png)
Now,
area of base
![=\pi\text{r}^2=\pi*(21√(3))^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/bcmsjdobx5ufxiypnjj1ozwl2l0tj0f5x6.png)
![=4158\text{cm}^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/xclutmu2st3lrgwkt8tfgbacu0ielvhic0.png)
Hence Area of base of cone is
![4158\text{cm}^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/km2kypuq69n8axmalctj8ma30ltjelnu8y.png)