Answer:
The sample size is 74
Pbar = 0.05
The variance information is needed
Explanation:
The population variance ,
![\sigma^(2) = 484](https://img.qammunity.org/2021/formulas/mathematics/college/ps5mykpyi46yz7cb5yg17ha8lym6ri2cv9.png)
![\sigma = 22](https://img.qammunity.org/2021/formulas/mathematics/college/zoqqj7nc03suuyxbfy2j16hqaqlaakzttg.png)
Confidence Interval level = 95% = 0.95
Significance Interval = 1 - CI
Significance Interval = 1 - 0.95 = 0.05
Error margin = 5
The critical value =
= 1.96 (From the z table)
The sample size is given by:
![n \geq ((Z_(\alpha /2) * \sigma)/(E) )^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/mf5o4mbla3vark2zaz7iq7dvfa5m1w5do4.png)
![n \geq ((1.96 * 22)/(5)) ^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/9jfzebe95ej40p8c0iinwemu97nmxnn7hn.png)
![n \geq 74.373\\n \geq 75](https://img.qammunity.org/2021/formulas/mathematics/college/ux5y8qt3uedpycxkc854ogjgo3s2pgiars.png)
![\bar{P} = 1 - P](https://img.qammunity.org/2021/formulas/mathematics/college/y5p5l80jhly975ai2kpsqa4c4yx45lc13y.png)
Since P = 0.95
![\bar{P} = 1 - 0.95\\\bar{P} = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/jvn1n7s7nkzd8bfzblzr59gwmn1bo7a6xc.png)
The variance information is needed in this question when calculating the sample size