Answer:
P is maximum at I = 2
Explanation:
We are given that;
P = 120I/(I² + I + 4)
Now, using differential coefficient, we have;
dP/dI = [(I² + I + 4)•(120I)' - (120I)•(I² + I + 4)']/(I² + I + 4)²
dP/dI = [(I² + I + 4)•(120) - (120I)•(2I + 1)]/(I² + I + 4)²
dP/dI = [(120I² + 120I + 480 - 240I² - 120I)]/(I² + I + 4)²
dP/dI = (-120I² + 480)/(I² + I + 4)²
dP/dI = -120(I² - 4)/(I² + I + 4)²
dP/dI = (-120(I + 2)(I - 2))/(I² + I + 4)²
At dP/dI = 0, I = 2 or - 2
Now,light intensity cannot be negative, thus we pick 2.
So there is local maxima at I = 2 because the sign of the derivative changes from positive to negative at that point.