Answer:
The 95% confidence interval for the mean savings is ($60.54, $81.46).
Explanation:
As there is no information about the population standard deviation of savings and the sample is not large, i.e. n = 20 < 30, we will use a t-confidence interval.
The (1 - α)% confidence interval for population mean (μ) is:
![CI=\bar x\pm t_(\alpha/2, (n-1))* (s)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/sbc217769tkx66skpxrr82vl797qmm77kc.png)
For the data provided compute the sample mean and standard deviation as follows:
![\bar x=(1)/(n)\sum\limits^(n)_(i=1){ X_(i)}=(1)/(20)* [92+34+40+...+53+82]=71](https://img.qammunity.org/2021/formulas/mathematics/college/hilv1zrdorw7xopc510fdfr6hcgluwqq7f.png)
![s= \sqrt{ \frac{ \sum{\left(x_i - \overline{X}\right)^2 }}{n-1} } = \sqrt{ ( 9492 )/( 20 - 1) } \approx 22.35](https://img.qammunity.org/2021/formulas/mathematics/college/oo9789nttj5eupcf24p5f93k5t6q80zq6j.png)
The critical value of t for α = 0.05 and (n - 1) = 19 degrees of freedom is:
![t_(\alpha/2, (n-1))=t_(0.025, 19)=2.093](https://img.qammunity.org/2021/formulas/mathematics/college/qa0f3i4hbnwed3gwiz3emd4ifbxqdjxtwy.png)
*Use a t-table for the value.
Compute the 95% confidence interval for the mean savings as follows:
![CI=\bar x\pm t_(\alpha/2, (n-1))* (s)/(√(n))\\=71\pm 2.093*(22.35)/(√(20))\\=71\pm 10.46\\=(60.54, 81.46)](https://img.qammunity.org/2021/formulas/mathematics/college/iuxoydag0emq3expr4s32v2jkg7xpr8i4z.png)
Thus, the 95% confidence interval for the mean savings is ($60.54, $81.46).