Answer:
a) The 95% confidence interval estimate for the mean weight fo the carry-on luggage
(17.38 , 22.61)
b) The 97% confidence interval estimate for the mean weight of the carry-on luggage
(17.11 , 22.89)
Explanation:
Step1:-
a sample of 36 pieces of carry-on luggage was weighed
n=36
The average weight was 20 pounds
x⁻ = 20
given standard deviation of the population to be 8 pounds.
σ = 8
Confidence intervals :-
The values
are called 95% of Confidence intervals for the mean of the population corresponding to the given sample.
The values
are called 97% of Confidence intervals for the mean of the population corresponding to the given sample.
Step:-(1)
The 95% confidence interval estimate for the mean weight of the carry-on luggage
![(x^(-) - 1.96 (S.D)/(√(n) ) ,x^(-) + 1.96 (S.D)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/m06d2b4ra50tkasp54ch5rdiq3auray2ca.png)
![(20 - 1.96 (8)/(√(36) ) ,20 + 1.96 (8)/(√(36) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/77nwj5je19sqmfrispw881d5sswgucru47.png)
on calculation , we get
(20 -2.613 ,20 +2.613)
(17.3866 , 22.613)
The 95% confidence interval estimate for the mean weight fo the carry-on luggage
(17.3866 , 22.613)
Step2:-
The 97% confidence interval estimate for the mean weight of the carry-on luggage
![(x^(-) - 2.17 (S.D)/(√(n) ) ,x^(-) + 2.17 (S.D)/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/j1tt1u2btu9tgna2m5266mfc5sawn70in7.png)
![(20 - 2.17 (8)/(√(36) ) ,20 + 2.17 (8)/(√(36) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/7heybt25l1snj4v262mtpzswrkadbcut7c.png)
on calculation , we get
(20-2.89 , 20+2.89)
(17.11 , 22.89)
The 97% confidence interval estimate for the mean weight of the carry-on luggage
(17.11 , 22.89)