Answer:
The hypothesis should be retained
Explanation:
We are given:
N= 16
n = 4
![SS_B_G = 24](https://img.qammunity.org/2021/formulas/mathematics/high-school/jcn5uatnxr12rgk0ldcq63un3l4ppoxkcq.png)
![SS_E = 48](https://img.qammunity.org/2021/formulas/mathematics/high-school/opzrd95oeu1kt88an78bpla8d2i7nc2a5i.png)
Level of significance, a = 0.05
From the given data, our ANOVA table will be:
![----Source: Between---- Residual---](https://img.qammunity.org/2021/formulas/mathematics/high-school/uoqejkw4ytj7wsy8kg3uclexnldwl5bse4.png)
![------DF:n-1=> 4-1=3------N-n=>16-4=12](https://img.qammunity.org/2021/formulas/mathematics/high-school/5le76h4uzll9nvjljnajhqqge8i93zwq1b.png)
![------SS: SS_B_G = 24---- SS_E =48](https://img.qammunity.org/2021/formulas/mathematics/high-school/3ptjog2fwrgkujv8931l9csowhouxwy42o.png)
![----MS: MS_B_G = 8----MS_E=48/12=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/ggtlb4xhpwhp2ugpadf38beoueflufrzla.png)
Note: proper ANOVA table is attached
The statistic will be written as:
![TS = (MS_B_G)/(MS_E) ~ F_n_-_1, _N_-_n](https://img.qammunity.org/2021/formulas/mathematics/high-school/ge6keb2rt6at9ckqei4jcfsxmhowt1pse1.png)
T = 8/4 = 2
Therefore
![F_n_-_1, _N_-_n, _a](https://img.qammunity.org/2021/formulas/mathematics/high-school/jcn7mcglxfx7224pleic5x5to1xe9i8v9f.png)
![=> F_3,_1_2,_ 0_._0_0_5 = 3.490](https://img.qammunity.org/2021/formulas/mathematics/high-school/ir51fckzzyvjavidbtx9tjberbkrbhnbfq.png)
The hypothesis should be retained, because we no know that the statistic is in the acceptance area.