Answer:
255.34 J
Step-by-step explanation:
Given,
Weight of disk = 805 N
radius = 1.47 m
Force applied by the child = 49 N
time = 2.95 s
KE = ?
mass of the disk
![M = (W)/(g)= (805)/(9.81) = 82.059\ Kg](https://img.qammunity.org/2021/formulas/physics/high-school/js9z96s4rdx92ozvigoummyqx8dw1g6rgf.png)
Moment of inertia of the disk
![I = (1)/(2)Mr^2](https://img.qammunity.org/2021/formulas/physics/high-school/nccfnvfx2kc02q5jcbcqmx3kmhertvoxay.png)
![I = (1)/(2)* 82.059* 1.47^2 =88.66\ kgm^2](https://img.qammunity.org/2021/formulas/physics/high-school/tx385pen4poxigokw6msovarp9wjr8jldn.png)
Torque on the child
![\tau = F * r = 49 * 1.47 = 72.03 Nm](https://img.qammunity.org/2021/formulas/physics/high-school/shmz9zfc5y6rylabzt7r776cj6jt52sznv.png)
Angular acceleration
![\alpha = (\tau)/(I)=(72.03)/(88.66) = 0.812\ rad/s^2](https://img.qammunity.org/2021/formulas/physics/high-school/k7gj4a2lriqfm2nbtytqkgfc6yx4zoa0du.png)
So, angular speed at t = 2.95 s
![\omega = \alpha t = 0.812 * 2.95 = 2.4\ rad/s](https://img.qammunity.org/2021/formulas/physics/high-school/orhnlvejq73ilaraexasp35i2kvvfcbn0p.png)
Now, KE of the merry go round
![KE = (1)/(2) I \omega^2 = (1)/(2)* 88.66* 2.4^2 = 255.34 J](https://img.qammunity.org/2021/formulas/physics/high-school/gbc5i0wvtdplvsvraivi9wqbh6mjgf8vi5.png)
Hence, the Kinetic energy of the merry go round = 255.34 J