Answer:
![v_2_2=30m/s](https://img.qammunity.org/2021/formulas/biology/high-school/i9g4zccwmjn0z6la3quhp5b3jvbbf6oncf.png)
Step-by-step explanation:
In all collisions the total linear momentum of the system is conserved. Therefore:
So,
represents the linear momentum before the collision and
represents the linear momentum after the collision. Now, let:
![m_1_1=Mass\hspace{3} of\hspace{3} the\hspace{3} bigger\hspace{3} o bject\hspace{3}before\hspace{3}the\hspace{3}collision\\v_1_1=Velocity \hspace{3} of\hspace{3} the\hspace{3} bigger\hspace{3} o bject\hspace{3}before\hspace{3}the\hspace{3}collision\\m_2_1=Mass\hspace{3} of\hspace{3} the\hspace{3} smaller\hspace{3} o bject\hspace{3}before\hspace{3}the\hspace{3}collision\\v_2_1=Velocity \hspace{3} of\hspace{3} the\hspace{3} smaller\hspace{3} o bject\hspace{3}before\hspace{3}the\hspace{3}collision](https://img.qammunity.org/2021/formulas/biology/high-school/w1iku0xsshfpmdmwhldx8e9i1ywtqyz4hc.png)
![m_1_2=Mass\hspace{3} of\hspace{3} the\hspace{3} bigger\hspace{3} o bject\hspace{3}after\hspace{3}the\hspace{3}collision\\v_1_2=Velocity \hspace{3} of\hspace{3} the\hspace{3} bigger\hspace{3} o bject\hspace{3}after\hspace{3}the\hspace{3}collision\\m_2_2=Mass\hspace{3} of\hspace{3} the\hspace{3} smaller\hspace{3} o bject\hspace{3}after\hspace{3}the\hspace{3}collision\\](https://img.qammunity.org/2021/formulas/biology/high-school/fxx8k1f7c6wlpnunnu6fh2is3yl8vta2xo.png)
![v_2_2=Velocity \hspace{3} of\hspace{3} the\hspace{3} smaller\hspace{3} o bject\hspace{3}after\hspace{3}the\hspace{3}collision](https://img.qammunity.org/2021/formulas/biology/high-school/n34fi8hagelkclmdx5abdfm97yov5tuxt0.png)
According to the data provided by the problem:
![m_1_1=40kg\\v_1_1=20m/s\\m_2_1=20kg\\v_2_2=10m/s\\m_1_2=40kg\\v_1_2=10m/s\\m_2_2=20kg\\v_2_2=$\text{?}](https://img.qammunity.org/2021/formulas/biology/high-school/afonl3etwpe9znsh38mxxgrjhgh66dluqz.png)
Replacing the data into the linear momentum equation and solving for
:
![m_1_1 v_1_1+m_2_1v_2_1=m_1_2 v_1_2+m_2_2 v_2_2\\\\(40)(20)+(20)(10)=(40)(10)+20(v_2_2)\\\\800+200=400+20(v_2_2)\\\\20(v_2_2)=600\\\\ (v_2_2)=(600)/(20) =30m/s](https://img.qammunity.org/2021/formulas/biology/high-school/9ak87bl08p87kwo2mt8vc1sujmka9i69nm.png)
Thus, the velocity of the smaller object after the collision is 30m/s