Answer:
(a)The 4th Pattern is:
13+23+33+43+53=152
(b)The 8th Pattern is:
13+23+33+43+53+63+73+83+93=452
Explanation:
Given the set of equations:
13 + 23 = 32
13 + 23 + 33 = 62
13 + 23 + 33 + 43 = 102
On observation, the right-hand side in the set of equations above is represented using the function:
[TeX] U_{k-1}=2+\sum_{n=1}^{k} 10n [/TeX]
For the first equation, k=2
[TeX] U_{1}=U_{2-1}=2+\sum_{n=1}^{2} 10n =2+10+20=32[/TeX]
For the second equation, k=3
[TeX] U_{2}=U_{3-1}=2+\sum_{n=1}^{3} 10n =2+10+20+30=62[/TeX]
For the third equation, k=4
[TeX] U_{3}=U_{4-1}=2+\sum_{n=1}^{4} 10n =2+10+20+30+40=102[/TeX]
We are required to determine the 4th and 8th equations.
For the fourth equation, k=5
[TeX] U_{4}=U_{5-1}=2+\sum_{n=1}^{5} 10n =2+10+20+30+40+50=152[/TeX]
Therefore, the 4th equation is:
13+23+33+43+53=152
For the eight equation, k=9
[TeX] U_{8}=U_{9-1}=2+\sum_{n=1}^{9} 10n =2+10+20+30+40+50+60+70+80+90=452[/TeX]
Therefore, the 8th equation is:
13+23+33+43+53+63+73+83+93=452