Answer:
a)
![(dv)/(dr) = 16\pi cubic ft /ft](https://img.qammunity.org/2021/formulas/mathematics/college/oy9m3rnqnq7eiv43zwrw4354ntezf8n8xc.png)
b) Approximate error of the volume increase when the radius changes from 2 to 2.4 ft = 0.6 that is
![(dv)/(v) =0.6 cubic ft /ft](https://img.qammunity.org/2021/formulas/mathematics/college/vvwwvi3actkj6v4emfdmm6lhcx7d7vpyma.png)
Explanation:
Explanation:-
a) Given Volume of spherical balloon
…(i)
Differentiating with respective to the radius 'r'
![(dv)/(dt) = (4\pi 3r^(2) )/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/bu6hdmseb35skcdrhr2fshe9fy81u1ujd6.png)
![(dv)/(dt) = 4 \pi r^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/cnskde6y8e1e1nca5c8j3k2jlslf2jek8w.png)
At r=2
![((dv)/(dr))r_(=2) =4\pi (4)=16\pi cubeft/ft](https://img.qammunity.org/2021/formulas/mathematics/college/ymo6fe7k27ycmsbmkvc5znyey7qfm9ugf8.png)
b) Step(1):-
Given Volume of spherical balloon
![V = (4\pi r^(3) )/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/uj683p6vttj6s0vayao6j6grcbpyusyhgr.png)
![logV = log((4\pi r^(3) )/(3))](https://img.qammunity.org/2021/formulas/mathematics/college/q3cvsp322b2xqaxsoz4j0bj5jd78quq2pe.png)
we property of logarithmic log(ab) = log a +log b
taking logarithmic on both sides , we get
…(ii)
Step2:-
we will use
![(d(logx))/(dx) = (1)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/uxtnzrzck7f9j0y6cbgswq9bhorilxkzyx.png)
δ v = 0 +
δ r
Given data radius changes from 2 to 2.4 ft
r+ δ r = 2.4 =2+0.4
here r =2 and δ r =0.4
Now
δ v =
![3 X (1)/(2) X 0.4](https://img.qammunity.org/2021/formulas/mathematics/college/oe2u9sgwejwzl59a306ky09vi58pyuxvqf.png)
δ v = 0.6
Approximate error in Volume = 0.6 cubic/ft
Approximate error of the volume increase when the radius changes from 2 to 2.4 ft = 0.6 that is
![(dv)/(v) =0.6 cubic ft /ft](https://img.qammunity.org/2021/formulas/mathematics/college/vvwwvi3actkj6v4emfdmm6lhcx7d7vpyma.png)