Answer:
Explanation:
For "no fast food,
n1 = 9
Mean = (2310 + 2295 + 2280 + 2340 + 2235 + 2265 + 2315 + 2291.429 + 34.8466)/9
Mean, m1 = 2041
Standard deviation, s1 = √summation(x - u)²/n
summation(x - u)² =
(2310 - 2041)^2 + (2295 - 2041)^2 + (2280 - 2041)^2 + (2340 - 2041)^2 + (2235 - 2041)^2 + (2265 - 2041)^2 + (2315 - 2041)^2 + (2291.429 - 2041)^2 + (34.8466 - 2041)^2
= 4533653.14837256
s = √4533653.14837256/9
s = 709.75
For " fast food",
n2 = 10
Mean = (2579 + 2160 + 2165 + 2580 + 2558 + 2591 + 2614 + 2518 2583.125 + 33.0646)/10
Mean,m2 = 2238
summation(x - u)² =
(2579 - 2238)^2 + (2160 - 2238)^2 + (2165 - 2238)^2 + (2580 - 2238)^2 + (2558 - 2238)^2 + (2591 - 2238)^2 + (2614 - 2238)^2 + (2518 - 2238)^2 + (2583.125 - 2238)^2 + (33.0646 - 2238)^2
= 5672294.38379816
s2 = √5672294.38379816/10
s2 = 753.15
For a confidence interval of 95%, z = 1.96
The formula for confidence interval is
m1 - m2 ± z × √(s1²/n1 + s2²/n2)
= 2041 - 2238 ± 1.96 × √(709.75²/9 + 753.15²/10)
= - 197 ± 1.96 × √(55971.6736 + 56723.4923)
= - 197 ± 1.96 × 335.7
= - 197 ± 657.972
The lower end of the interval is
- 197 - 657.972 = - 854.972
The upper end of the interval is
- 197 + 657.972 = 460.972