Answer:
a)
, b)
, c)
, d)
, e)
, f)
, g)
![E = 1.690\,J](https://img.qammunity.org/2021/formulas/physics/college/va283ycb83xo3jcn17xneyqrxdki3831cm.png)
Step-by-step explanation:
a) The frequency is the reciprocal of the period of oscillation:
![f = (1)/(T)](https://img.qammunity.org/2021/formulas/physics/college/c84w0flr3d3dcb4wkz4usgwkgla9usm8m6.png)
![f = (1)/(0.609\,s)](https://img.qammunity.org/2021/formulas/physics/college/60erl8l11ezp2hi1mq07ftl77rraau4mi4.png)
![f = 1.642\,hz](https://img.qammunity.org/2021/formulas/physics/college/tzibo5m0kru4e7wjutrtgpfelowar7kq12.png)
b) The equilibrium position is the average of the extreme points:
![\bar x = (-0.279\,m +0.469\,m)/(2)](https://img.qammunity.org/2021/formulas/physics/college/zho41ap4szkwdcxn2kgqlh7vnfzue786n8.png)
![\bar x = 0.095\,m](https://img.qammunity.org/2021/formulas/physics/college/in7as7pp9cb6vbtic34pihpi2xfx64m5ff.png)
c) The amplitude is the absolute of the substraction of the equilibrium position from any of the extreme points:
![A = |0.469\,m - 0.095\,m|](https://img.qammunity.org/2021/formulas/physics/college/ezk4rw3bx7fplvc1jbompm5h7l0te1muvc.png)
![A = 0.374\,m](https://img.qammunity.org/2021/formulas/physics/college/8h6k9bfpt1anqwapjvkj4v9lolcfqugx1p.png)
d) The angular frequency is:
![\omega = 2\pi \cdot f](https://img.qammunity.org/2021/formulas/physics/college/kobltrp678p4eavnwz6f6zs4uwmvjpfn0k.png)
![\omega = 2\pi \cdot (1.642\,hz)](https://img.qammunity.org/2021/formulas/physics/college/2rz5hiddzyta2vzclm4kbexbz15c4d81ta.png)
![\omega \approx 10.317\,(rad)/(s)](https://img.qammunity.org/2021/formulas/physics/college/rz24506bvvn038urx9dl6mzz9j24saq8ba.png)
The maximum speed is:
![v_(max) = \omega \cdot A](https://img.qammunity.org/2021/formulas/physics/high-school/vhmum97qfkuqrypy1c46oa0gbvt404n1lk.png)
![v_(max) = (10.317\,(rad)/(s) )\cdot (0.374\,m)](https://img.qammunity.org/2021/formulas/physics/college/24n9ul456dbucjq8p0xaphswnkalyu1exb.png)
![v_(max) = 3.859\,(m)/(s)](https://img.qammunity.org/2021/formulas/physics/college/ppefj0zeaiiv4h3e06omljkqotlvtsjsa2.png)
e) The maximum acceleration is:
![a_(max) = \omega^(2)\cdot A](https://img.qammunity.org/2021/formulas/physics/college/jfm2fpvcfaw273w9xiegwra5u9w9xelccz.png)
![a_(max) = (10.317\,(rad)/(s) )^(2)\cdot (0.374\,m)](https://img.qammunity.org/2021/formulas/physics/college/85f3h463rq6rkqmp3z66k5omz0h6mwdet5.png)
![a_(max) = 39.809\,(m)/(s^(2))](https://img.qammunity.org/2021/formulas/physics/college/7fawc0cm0f0g172526xvj52zpxv1w9i5d8.png)
f) The force constant is:
![k = \omega^(2)\cdot m](https://img.qammunity.org/2021/formulas/physics/high-school/bmdp0au9h0lu5pneaz5ns84ezfzdc3x8ot.png)
![k = (10.317\,(rad)/(s) )^(2)\cdot (0.227\,kg)](https://img.qammunity.org/2021/formulas/physics/college/bx38rr9ttq6q2gll6ktfytyht1zhraw6m0.png)
![k = 24.162\,(N)/(m)](https://img.qammunity.org/2021/formulas/physics/college/xguq880gg5nx8aibjlktm0op132euna7em.png)
g) The total mechanical energy is:
![E = (1)/(2)\cdot k \cdot A^(2)](https://img.qammunity.org/2021/formulas/physics/college/ggshp4wjbue5kqrf74ther2yu7ltz8jgd8.png)
![E = (1)/(2)\cdot (24.162\,(N)/(m) )\cdot (0.374\,m)^(2)](https://img.qammunity.org/2021/formulas/physics/college/9c531gamvl29r0qa3slhf78v779g3772sv.png)
![E = 1.690\,J](https://img.qammunity.org/2021/formulas/physics/college/va283ycb83xo3jcn17xneyqrxdki3831cm.png)