Answer:
The 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2 is (5.20, 7.60).
Explanation:
The (1 - α)% confidence interval for the difference between two population mean when the population standard deviations are known is:
![CI=(\bar x_(1)-\bar x_(2))\pm z_(\alpha/2)* \sqrt{(\sigma^(2)_(1))/(n_(1))+(\sigma^(2)_(2))/(n_(2))}](https://img.qammunity.org/2021/formulas/mathematics/college/w8w7m5pb3qrt9ptgpymmm5kdwf8z2edosv.png)
The information provided is:
![\bar x_(1)=82.9\\\sigma_(1)=7.97\\n_(1)=293\\\bar x_(2)=76.5\\\sigma_(2)=6.66\\n_(2)=282](https://img.qammunity.org/2021/formulas/mathematics/college/w6ig5x10yozjd6xasbarfsujnoow0en2s0.png)
The critical value of z for 98% confidence interval is:
![z_(\alpha/2)=z_(0.02/2)=z_(0.0)=2.33](https://img.qammunity.org/2021/formulas/mathematics/college/ku3lqko3ugxybbn1wgv4xhzip6apftz2mg.png)
*Use a z-table for the critical value.
Compute the 98% confidence interval for the difference between two population means as follows:
![CI=(\bar x_(1)-\bar x_(2))\pm z_(\alpha/2)* \sqrt{(\sigma^(2)_(1))/(n_(1))+(\sigma^(2)_(2))/(n_(2))}](https://img.qammunity.org/2021/formulas/mathematics/college/w8w7m5pb3qrt9ptgpymmm5kdwf8z2edosv.png)
![=(82.9-76.5)\pm 1.96* \sqrt{(7.97^(2))/(293)+(6.66^(2))/(282)}](https://img.qammunity.org/2021/formulas/mathematics/college/z3qu2cxwzyjsw519illo15ecirize6gi2g.png)
![=6.4\pm 1.199\\=(5.201, 7.599)\\\approx(5.20, 7.60)](https://img.qammunity.org/2021/formulas/mathematics/college/mn6tn6hb0466htoygs16kwq949giwktv3s.png)
Thus, the 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2 is (5.20, 7.60).