I suppose the equation should read
![13^(x+7)=12^(-9x)](https://img.qammunity.org/2021/formulas/mathematics/college/np3rv18r7idgkqf3dxj3eg8oi0x7okgnvm.png)
Take the logarithm of both sides; the base of the logarithm doesn't really matter, so I'll make the "natural" choice:
![\ln 13^(x+7)=\ln12^(-9x)](https://img.qammunity.org/2021/formulas/mathematics/college/13nx3cu300lprmlxbv1g0hx1p979ohl6j0.png)
Use the exponent property of logarithms:
![(x+7)\ln13=-9x\ln12](https://img.qammunity.org/2021/formulas/mathematics/college/4ncgpgtfp0y3rxu36psply1j12k33z2p10.png)
Solve for
:
![x\ln13+7\ln13=-9x\ln12](https://img.qammunity.org/2021/formulas/mathematics/college/bbinmspedpmzp9ybulfcnue5ln656mtjkz.png)
![x(\ln13+9\ln12)=-7\ln13](https://img.qammunity.org/2021/formulas/mathematics/college/gmjwnymfiivb55drnbrzslh091wn9e1xqn.png)
![x=-(7\ln13)/(\ln13+9\ln12)](https://img.qammunity.org/2021/formulas/mathematics/college/nt7mj5c294u035qlqkrvpm6344omamthqx.png)
Then divide through the numerator and denominator by
:
![x=-\frac7{1+9(\ln12)/(\ln13)}](https://img.qammunity.org/2021/formulas/mathematics/college/wbpp7kwk0nukk1qlt41m32q1n9hhkni9vx.png)
Use the change of base formula to rewrite
![(\ln12)/(\ln13)=\log_(13)12](https://img.qammunity.org/2021/formulas/mathematics/college/gs95eachnwc5s752271x3or27wekhpepnr.png)
So we end up with one of many ways of expressing the solution:
![\boxed{x=-\frac7{1+9\log_(13)12}}](https://img.qammunity.org/2021/formulas/mathematics/college/97rgqoust8lumh13m2xkqcwpg91wvv8nj7.png)