Answer:
P( \bar{x} >= 50) = 0.011
Explanation:
From the question given, the details below were provided:
\mu = 40, \sigma = 17
Based on the central limit theorem,
P(\bar{x} < x) = P( Z < x - \mu / \sigma / sqrt(n) )
Thus,
P( \bar{x} >= 50) = P( Z >= 50 - 40 / 17 / sqrt(15) )
P( \bar{x} >= 50) = P( Z >= 2.2782)
P( \bar{x} >= 50) = 1 - P (Z < 2.2782)
P( \bar{x} >= 50) = 1 - 0.9886
P( \bar{x} >= 50) = 0.011