204k views
2 votes
Value of x??????????????​

Value of x??????????????​-example-1

1 Answer

6 votes

Answer:

x = 3.5 units

Explanation:

Let h be the height of triangle.


\therefore \: {h}^(2) = (2x + 1)^(2) - {8}^(2) \\ \hspace{24 pt}= 4 {x}^(2) + 4x + 1 - 64 \\ \hspace{24 pt}= 4 {x}^(2) + 4x - 63 ...(1)\\ \\ by \: geometric \: mean \: property \\ {h}^(2) = 8 * x \\ {h}^(2) =8x...(2) \\ from \: equations \: (1) \: and \: (2) \\ 4 {x}^(2) + 4x - 63 = 8x \\ \therefore \: 4 {x}^(2) + 4x - 63 - 8x = 0 \\ \therefore \: 4 {x}^(2) - 4x - 63 = 0 \\ \therefore \: 4 {x}^(2) + 18x - 14x - 63 = 0 \\ \therefore \: 2x(2x + 9) - 7(2x + 9) = 0 \\ \therefore \: (2x + 9)(2x - 7) = 0 \\ \therefore \: 2x + 9 = 0 \: or \: 2x - 7 = 0 \\ \therefore \: x = - (9)/(2) \: or \: x = (7)/(2) \\ but \: x \: can \: not \: be \: - ve \\ \therefore \: x \\eq \: - (9)/(2) \\ \therefore \: x = (7)/(2) \\ \huge \red{ \boxed{ \therefore \: x = 3.5 \: units}}

User Xameer
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories