Given:
Given that ΔTUV is a right triangle. The measure of ∠V=90°, the measure of ∠U=55°, and VT = 82 feet.
We need to determine the length of TU.
Length of TU:
The length of TU can be determined using the trigonometric ratio.
Thus, we have;
![sin \ \theta=(opp)/(hyp)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nkldre8lgjlz53znju6dbblh6iiu7nhh3e.png)
where
,
and
![hyp =TU](https://img.qammunity.org/2021/formulas/mathematics/high-school/ym1hjvi5zass11562tdu9gzf5js7mdb51s.png)
Substituting the values, we get;
![sin \ 55^(\circ)=(82)/(TU)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hwb780s0nis8mwygb1pr6ggxirxxtvf61q.png)
Simplifying, we get;
![TU=(82)/(sin \ 55^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/5sf5woviifxl564pu9hlxppzwuevmztm7u.png)
![TU=(82)/(0.819)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sa2rnswqaj2145do4s7ma4kohlsqvr7egn.png)
![TU=100.12](https://img.qammunity.org/2021/formulas/mathematics/high-school/cf9bsltv6abxkukba7fb2ae01wvtfew097.png)
Rounding off to the nearest tenth, we get;
![TU=100.1](https://img.qammunity.org/2021/formulas/mathematics/high-school/753tnflbkb0ewnkgkyiyiv4961un7ig8a7.png)
Thus, the length of TU is 100.1 feet.