75.5k views
0 votes
Given that a^­­b = x, evaluate a^(b+2)

User Ctsears
by
4.0k points

2 Answers

6 votes

Answer:


\huge\boxed{a^(b+2)=a^2x=x^{(b+2)/(b)}}

Explanation:


a^b=x\qquad(*)\\\\a^b=x\to\left(a^b\right)^(1)/(b)=x^(1)/(b)\\\\\text{use}\ (a^n)^m=a^(nm)\\\\a^{(b)\left((1)/(b)\right)}=x^(1)/(b)\to a=x^(1)/(b)\qquad(**)\\\\a^(b+2)\qquad\text{use}\ a^n\cdot a^m=a^(n+m)\\\\a^(b+2)=a^b\cdot a^2\\\\\text{From (*) and (**)}:\\\\a^(b+2)=x\cdot\left(x^(1)/(b)\right)^2\\\\\text{use}\ (a^n)^m=a^(nm)\\\\a^(b+2)=x\cdot x^{\left((1)/(b)\right)(2)}\\\\a^(b+2)=x\cdot x^{(2)/(b)}\\\\\text{use}\ a^n\cdot a^m=a^(n+m)


a^(b+2)=x^{1+(2)/(b)}\\\\a^(b+2)=x^{(b)/(b)+(2)/(b)}\\\\a^(b+2)=x^{(b+2)/(b)}

User Ramith Jayatilleka
by
4.8k points
4 votes

Answer:

a²x

Explanation:

a^(b+2)

a^b × a^2

x × a²

a²x

User Neel Gala
by
4.4k points