Answer:
![\huge\boxed{y=(1)/(2)x+(5)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f6dtxmpj86k7zp1k7evaysjziivwr349qp.png)
Explanation:
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6g6za4c720e5154tr4m4qzakkci1x13a8r.png)
We have two points (-9, -2) and (1, 3).
Substitute:
![m=(3-(-2))/(1-(-9))=(5)/(10)=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dyqdjf4p4m3zovakznuxft74f648te2gao.png)
The point-slope form of an equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ks7lzc9jj3emt3ptrdvrvr0uzhz4c0qyo5.png)
For (-9, -2):
![y-(-2)=(1)/(2)(x-(-9))\\\\y+2=(1)/(2)(x+9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kswy7po1kj3upb7pb1pbevs88l1kjuovxj.png)
For (1, 3):
![y-3=(1)/(2)(x-1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/crm4u73gqmg2tuhqmj6lr31iapa27c2qrp.png)
The slope-intercept form of an equation of a line:
![y=mx+b](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yj5waqmoy4i54laybzhhshd88hyo5w5rj5.png)
b - y-intercept
Put the coordinates of the point (1, 3) and the value of a slope to the equation of a line:
![3=(1)/(2)\cdot1+b\\\\3=(1)/(2)+b\qquad\text{subtract}\ \dfraC{1}{2}\ \text{from both sides}\\\\2(1)/(2)=b\to b=(5)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5w0s3yzkepq8bqkvmm65mjvi2tx4oyd6gt.png)
The equation of a line in the slope-intercept form is:
![y=(1)/(2)x+(5)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nj6bkcyd9rxfnafjctmnh9b4q9z1a1d0sj.png)