1)
![(x^2-16)/(x^2+6x+8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uw986pb33ay4bics05s8r0o5s4ztyfndvb.png)
Decompose the numerator and denominator into multipliers
To simplify the numerator we use the formula of difference of squares
![x^2-y^2=(x-y)(x+y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/iou74i13vtqj4m8xmh8nh6xpr3s17r1k2c.png)
![x^2-16=(x-4)(x+4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/d27k67v0i9m1hx9flyeer704orxuepto06.png)
To decompose the denominator into multipliers solve the square equation
![x^2+6x+8=0\\D=6^2-4*8=4=2^2\\x_1=(-6+2)/(2) =-2\\x_2=(-6-2)/(2) =-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/7uiyjvq00gdm9awhy246gsxgzdw0h6hs7l.png)
Formula for factoring a square equation
![(x-x_1)(x-x_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9rmhg4bkr4q8jv3w170eqr902b71ggdpsz.png)
Substituting the found roots of the equation into the formula
![(x-(-2))(x-(-4))=(x+2)(x+4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tblzv4cwi5gzygqyqmc1fn2fpi2uhrq12y.png)
After simplifying the numerator and denominator we get a fraction
, so
![(x^2-16)/(x^2+6x+8)=((x-4)(x+4))/((x+2)(x+4))=(x-4)/(x+2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/t42djkw7jspceghrst5q8mv9g2a685pvjs.png)
2)
![(x^2-x-6)/(x^2-3x-10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xr6jibbpha4c7slg9ok3630k450tfobanx.png)
Decompose the numerator and denominator into multipliers
To decompose the numerator into multipliers solve the square equation
![x^2-x-6=0\\D=(-1)^2-4*(-6)=25=5^2\\x_1=(1+5)/(2) =3\\x_2=(1-5)/(2) =-2](https://img.qammunity.org/2021/formulas/mathematics/high-school/pgib2n4ngezyk976mv3aqmrmhoq9c491tt.png)
Formula for factoring a square equation
![(x-x_1)(x-x_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9rmhg4bkr4q8jv3w170eqr902b71ggdpsz.png)
Substituting the found roots of the equation into the formula
![(x-3)(x-(-2))=(x-3)(x+2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zv8l8vs6fkfsvxvm9va6gkwoa305z2opzh.png)
To decompose the denominator into multipliers solve the square equation
![x^2-3x-10=0\\D=(-3)^2-4*(-10)=49=7^2\\x_1=(3+7)/(2) =5\\x_2=(3-7)/(2) =-2](https://img.qammunity.org/2021/formulas/mathematics/high-school/umopjwk3cv67fnrj26wwzjrvi18adqamn2.png)
Formula for factoring a square equation
![(x-x_1)(x-x_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9rmhg4bkr4q8jv3w170eqr902b71ggdpsz.png)
Substituting the found roots of the equation into the formula
![(x-5)(x-(-(-2))=(x-5)(x+2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x73r2yyrbup8ka5zy6b7dji7fsy0962641.png)
After simplifying the numerator and denominator we get a fraction
, so
![(x^2-x-6)/(x^2-3x-10)=((x-3)(x+2))/((x-5)(x+2))=(x-3)/(x-5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ademvt21rwg43ejid5xe5ccd2cyxo2r8g2.png)
Hello from Russia:^)